交叉熵方法 (CEM)
- class pypop7.optimizers.cem.cem.CEM(problem, options)[源代码]
交叉熵方法 (Cross-Entropy Method, CEM)。
这是所有 CEM 类的抽象类。请使用其任何一个实例化的子类来优化手头的黑盒问题。
注意
- CEM 是一类基于群体的、有原则的优化器,最初由 Rubinstein 提出,
其核心思想基于 Kullback–Leibler(或交叉熵)最小化。
- 参数:
problem (dict) –
- 问题参数,包含以下通用设置 (键)
'fitness_function' - 需要被最小化的目标函数 (func),
'ndim_problem' - 维度数量 (int),
'upper_boundary' - 搜索范围的上边界 (array_like),
'lower_boundary' - 搜索范围的下边界 (array_like).
options (dict) –
- 优化器选项,包含以下通用设置 (键)
'max_function_evaluations' - 函数评估的最大次数 (int, 默认: np.inf),
'max_runtime' - 允许的最大运行时间 (float, 默认: np.inf),
'seed_rng' - 随机数生成器的种子,需要明确设置 (int);
- 以及以下特定设置 (键)
‘sigma’ - 初始全局步长,也称为变异强度 (float),
‘mean’ - 初始(起始)点,也称为高斯搜索分布的均值 (array_like),
如果未给出,它将从一个均匀分布中随机抽样,该分布的搜索范围由 problem[‘lower_boundary’] 和 problem[‘upper_boundary’] 界定。
‘n_individuals’ - 个体/样本数量 (int, 默认: 1000),
‘n_parents’ - 精英个体数量 (int, 默认: 200)。
- mean
初始(起始)点,也称为高斯搜索(变异/采样)分布的均值。
- 类型:
array_like
- n_individuals
个体/样本的数量。
- 类型:
int
- n_parents
精英个体的数量。
- 类型:
int
- sigma
初始全局步长,也称为变异强度。
- 类型:
float
参考文献
Amos, B. and Yarats, D., 2020, November. The differentiable cross-entropy method. In International Conference on Machine Learning (pp. 291-302). PMLR. http://proceedings.mlr.press/v119/amos20a.html
Rubinstein, R.Y. and Kroese, D.P., 2016. Simulation and the Monte Carlo method (Third Edition). John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118631980
Hu, J., Fu, M.C. and Marcus, S.I., 2007. A model reference adaptive search method for global optimization. Operations Research, 55(3), pp.549-568. https://pubsonline.informs.org/doi/abs/10.1287/opre.1060.0367
Kroese, D.P., Porotsky, S. and Rubinstein, R.Y., 2006. The cross-entropy method for continuous multi-extremal optimization. Methodology and Computing in Applied Probability, 8(3), pp.383-407. https://link.springer.com/article/10.1007/s11009-006-9753-0
De Boer, P.T., Kroese, D.P., Mannor, S. and Rubinstein, R.Y., 2005. A tutorial on the cross-entropy method. Annals of Operations Research, 134(1), pp.19-67. https://link.springer.com/article/10.1007/s10479-005-5724-z
Rubinstein, R.Y. and Kroese, D.P., 2004. The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation, and machine learning. New York: Springer. https://link.springer.com/book/10.1007/978-1-4757-4321-0